

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Benzene Induced ^1H NMR Shifts of Chromeno-Compounds: An Aid to Differentiate Linear and Angular Chromenoflavones

A. Banerji^a; D. L. Luthria^a

^a Chemical Ecology Section, Bio-Organic Division, Bhabha Atomic Research Centre, Bombay, India

To cite this Article Banerji, A. and Luthria, D. L. (1990) 'Benzene Induced ^1H NMR Shifts of Chromeno-Compounds: An Aid to Differentiate Linear and Angular Chromenoflavones', *Spectroscopy Letters*, 23: 1, 1 — 12

To link to this Article: DOI: 10.1080/00387019008054032

URL: <http://dx.doi.org/10.1080/00387019008054032>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

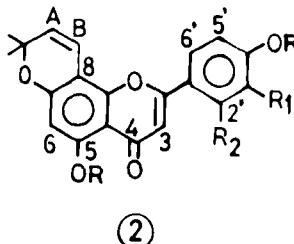
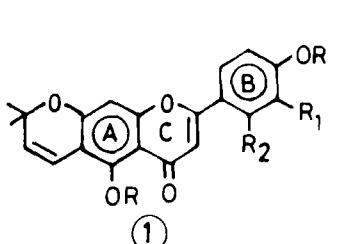
**BENZENE INDUCED ^1H NMR SHIFTS OF
CHROMENO-COMPOUNDS: AN AID TO
DIFFERENTIATE LINEAR AND ANGULAR
CHROMENOFLAVONES**

Key Word : Benzene Induced Shifts, ^1H NMR, Chromeno-compounds, Differentiation of linear and angular chromenoflavones

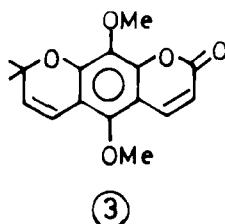
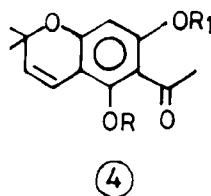
A. Banerji and D. L. Luthria

Chemical Ecology Section, Bio-Organic Division,
Bhabha Atomic Research Centre, Trombay,
Bombay 400 085, India.

ABSTRACT: Benzene-induced shifts (BIS) in the ^1H NMR spectra of nine chromeno-compounds have been studied. It provides a simple non-destructive technique for distinguishing linear isomers of chromenoflavones from



their angular counterparts. BIS also assists in the assignment of chromene proton signals in chromenoccompounds.

INTRODUCTION



Solvent induced ^1H NMR shift is one of the simple and non-destructive spectroscopic techniques which has been utilized extensively in solving structural, stereochemical and conformational problems ¹. Use of this technique for the structural analysis of simple flavonoids has been reported previously ². We have studied benzene induced shifts (BIS) ($\Delta\text{ppm} = \delta(\text{CDCl}_3) - \delta(\text{C}_6\text{D}_6)$) to get an insight into the molecular architecture of structurally related chromenoflavones (1a-c, 2a-c). This technique not only provides a simple method for differentiation of angular and linear isomers, but is also useful in the assignment of signals due to chromene protons. The present paper reports the BIS studies of nine compounds containing chromene ring (FIG. 1).

RESULTS AND DISCUSSIONS

Recently, we have isolated two new chromenoflavones *viz.* atalantoflavone (2d) and racemoflavone (2e) from *Atalantia racemosa* ³. Assignment of the position of chromene ring presents a major problem in the elucidation of structures of such compounds ⁴. Color reactions such as Gibbs test have

CHROMENOFLAVONES

a) $R = Me$, $R_1 = R_2 = H$ a) $R = Me$, $R_1 = R_2 = H$
 b) $R = Me$, $R_1 = OMe$, $R_2 = H$ b) $R = Me$, $R_1 = OMe$, $R_2 = H$
 c) $R = Me$, $R_1 = H$, $R_2 = OMe$ c) $R = Me$, $R_1 = H$, $R_2 = OMe$
 d) $R = R_1 = R_2 = H$ d) $R = R_1 = R_2 = H$
 e) $R = R_2 = H$, $R_1 = OMe$ e) $R = R_2 = H$, $R_1 = OMe$

CHROMENOCOUMARINACETYLCHROMENES

a) $R = Me$, $R_1 = H$
 b) $R = H$, $R_1 = Me$

FIG. 1. Structure of Chromeno-compounds.

been used in determining the position of the fused chromene moiety ⁵⁻⁶, but this method has often proved to be inadequate in many instances ^{4,7,8}, thereby resulting in the erroneous assignment of structures. Differences in the chemical shifts of unsubstituted A

ring proton (H-6 or H-8) can also be utilized for the differentiation of isomers. This too has limitation, due to occasional overlapping of signals of H-3, H-6 and H-8 protons ⁴. This prompted us to explore the possibility of utilizing BIS for the characterization of chromenoflavones. Therefore, BIS of nine chromeno-compounds of known structures were studied.

In the present study on chromenoflavones, the C-5 methoxyl protons of the linear isomers (1a-c) showed small downfield shifts (≈ -0.06) due to their proximity to the negative end of the carbonyl dipole. However in contrast, the angular isomers (2a-c) exhibited marked upfield shifts ($\approx +0.51$) because of the presence of free ortho protons (H-6). Thus, the shifts of C-5 methoxyl protons are of diagnostic value for the differentiation of angular and linear isomers. Methoxyl protons of the B ring having free ortho proton(s) also exhibited expected upfield shifts (FIG.2). These BIS for the methoxyl proton are in agreement with the observations made by Wilson *et al.*⁹

BIS studies of the chromene ring protons (gem dimethyl, A and B) of compounds (1a-c, 2a-c, 3 and 4a,b) revealed some interesting features. According to carbonyl plane rule¹⁰ a downfield shift of chromene proton B and an upfield shift of chromene proton A are expected for linear isomers (1a-c), while in the case of angular isomers (2a-c) both the chromene protons (A

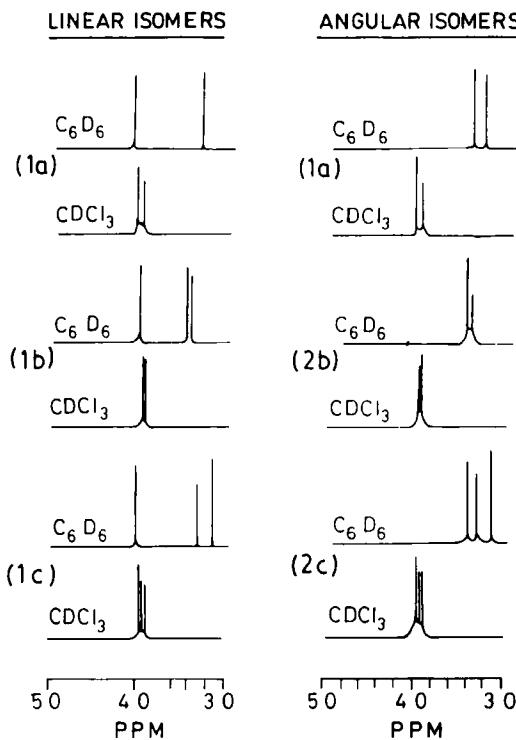


FIG. 2. Chemical Shifts of the Methoxyl Protons in CDCl_3 and C_6D_6 of Chromenoflavones.

and B) are expected to show an upfield shift. Suresh *et al.*¹¹ have reported similar effects in dihydropyranoisoflavones. However, in the present study it was observed that irrespective of the position of the chromene ring in chromenoflavones, B protons always showed downfield shifts of small magnitude (-0.02 to -0.08) while marked upfield shifts (+ 0.27 to +0.38) were observed for A protons.

Thus carbonyl functionality does not seem to influence shifts of chromene protons. Other compounds *viz.* racemosin (3), evodionol (4a) and isoevodionol (4b) having different disposition of carbonyl groups also showed marked upfield shifts in the range of +0.3 to +0.5 for A protons. However, shifts of smaller magnitude (-0.03 to +0.17) were observed for B protons. The marked downfield shift (-0.35) in case of compound 4b for B proton was due to the presence of free hydroxyl group at position 5. These differences in the shifts of A and B protons of the chromene ring may be due to the diffused solute solvent interaction arising from the steric effect of gem dimethyl groups. The gem dimethyl group of the linear isomers (1a-c, 3 and 4a) showed upfield shifts of higher magnitude (+0.20 to +0.40) as compared to the corresponding shifts (\approx +0.14) observed for the angular isomers (2a-c, 4b) (Table 1).

The H-3 proton of 4'-monomethoxylated B ring chromenoflavones (1a, 2a) exhibited insignificant downfield shift (\approx -0.01), which increased marginally (-0.09) for 3',4' dimethoxylated compounds (1b, 2b) but significantly (-0.26) in case of 2', 4'dimethoxylated B ring chromenoflavones (1c, 2c). Thus the magnitude of the down shifts of the H-3 protons were found to be dependent on the proximity of the methoxyl group of the B ring of chromenoflavones. The A ring aromatic protons (H-6 or H-8) of chromenoflavones

TABLE 1
Chemical shifts of chromene ring protons (gem dimethyl, A and B) in CDCl_3 and C_6D_6 .

COMPOUND	PROTONS		
	gem dimethyl	A	B
<u>LINEAR ISOMERS</u>			
1a	1.47, s 1.27, s (+0.20)	5.69, d, 10 5.31, d, 10 (0.38)	6.74, d, 10 6.76, d, 10 (-0.02)
1b	1.47, s 1.27, s (+0.20)	5.69, d, 10 5.32, d, 10 (+0.37)	6.74, d, 10 6.77, d, 10 (-0.03)
1c	1.46, s 1.26, s (+0.20)	5.67, d, 10 5.31, d, 10 (+0.36)	6.74, d, 10 6.77, d, 10 (-0.03)
3	1.52, s 1.22, s (+0.30)	5.74, d, 10, 5.25, d, 10 (+0.49)	6.58, d, 10 6.41, d, 10 (+0.17)
4a	1.44, s 1.20, s (+0.24)	5.60, d, 10 5.20, d, 10 (+0.40)	6.49, d, 10 6.34, d, 10 (+0.15)
<u>ANGULAR ISOMERS</u>			
2a	1.49, s 1.34, s (+0.15)	5.60, d, 10 5.31, d, 10 (+0.29)	6.83, d, 10 6.82, d, 10 (-0.01)
2b	1.50, s 1.34, s (+0.16)	5.60, d, 10 5.30, d, 10 (+0.30)	6.81, d, 10 6.84, d, 10 (-0.03)
2c	1.48, s 1.34, s (+0.14)	5.56, d, 10 5.29, d, 10 (+0.27)	6.79, d, 10 6.87, d, 10 (-0.08)
4b	1.44, s 1.31, s (+0.13)	5.45, d, 10 5.12, d, 10 (+0.33)	6.65, d, 10 7.00, d, 10 (-0.35)

1. δ Values in ppm relative to TMS, J values in Hz, s = singlet, d = doublet.

2. Normal values are obtained with CDCl_3 as solvent, while the underlined values are obtained with C_6D_6 as solvent.

3. Values in the parenthesis indicate Benzene Induced Shifts (BIS) [$\Delta = \delta_{\text{CDCl}_3} - \delta_{\text{C}_6\text{D}_6}$].

showed small upfield shifts (+0.02 to +0.10) except in case of compound 4c where a slight downfield shift (-0.03) was observed. However, Vyas *et al.*^{1,2}, during their study on polymethoxylated flavones have differentiated H-3 protons (which showed small downfield shifts between -0.01 to -0.15) from aromatic protons (H-8) where marked upfield shifts (+0.30 to +0.50) were observed. Thus a clear distinction between H-3 and A ring aromatic protons as observed by Vyas *et al.* is not possible in the present study. The B ring aromatic protons showed upfield shifts of varying magnitudes which were not of much diagnostic value (Table 2).

Thus, it can be concluded that BIS study is a simple complementary technique which provides useful information for structural elucidation of chromenoflavones. This technique is particularly useful for natural products where characterization by chemical methods becomes difficult due to their limited availability.

EXPERIMENTAL

The physical and the spectral data of the compounds (1a,c; 2a,b; 3a,b; 4) were in perfect agreement with those reported in the literature^{3,6,13,14}. Compounds (1b and 2c) were synthesized and their structures were established by physical and spectral analyses (mp, microanalysis, ¹H NMR, UV, IR, MS)¹⁵.

Table 2
¹H NMR data of chromenoflavones (1a-c, 2a-c).

PROTONS	COMPOUNDS					
	1a	1b	1c	2a	2b	2c
H-3,s	6.52 6.54 (-0.02)	6.53 6.62 (-0.09)	6.85 7.11 (-0.26)	6.54 6.55 (-0.01)	6.55 6.63 (-0.08)	6.85 7.11 (-0.26)
H-6,s	-	-	-	6.31 6.21 (+0.10)	6.32 6.22 (+0.10)	6.29 6.21 (+0.08)
H-8,s	6.67 6.64 (+0.03)	6.69 6.67 (+0.02)	6.63 6.66 (-0.03)	-	-	-
2'		7.33,d,2 7.11,d,2 7.78,d,8 7.46,d,8 (+0.32)	-	7.32,d,2 7.11,d,2 7.79,d,8 7.47,d,8 (+0.32)	7.32,d,2 7.11,d,2 7.47,dd,8,2 7.24,dd,8,2 (+0.23)	-
6'		7.46,dd,8,2 7.23,dd,8,2 (+0.23)	7.76,d,8 7.65,d,8 (+0.11)	7.76,d,8 7.65,d,8 (+0.23)	7.76,d,8 7.65,d,8 (+0.11)	
3'		-	6.54,d,2 6.26,d,2 6.99,d,8 6.65,d,8 (+0.34)	-	-	6.55,d,2 6.28,d,2 6.99,d,8 6.66,d,8 (+0.27)
5'		6.96,d,8 6.51,d,8 (+0.45)	6.60,dd,8,2 6.34,dd,8,2 (+0.26)	(+0.33)	6.97,d,8 6.52,d,8 (+0.45)	6.61,dd,8,2 6.34,dd,8,2 (+0.27)
C-5 methoxyl	3.92 3.98 (-0.06)	3.93 3.99 (-0.06)	3.93 3.98 (-0.05)	3.93 3.42 (+0.51)	3.94 3.39 (+0.55)	3.93 3.42 (+0.51)

1. δ Values in ppm relative to TMS, J values in Hz. s = singlet, d = doublet, dd = double doublet.

2. Normal values are obtained with CDCl_3 as solvent, while underlined values are obtained with C_6D_6 as solvent.

3. Values in the parenthesis indicate Benzene Induced Shifts (BIS) [$\Delta = \delta_{\text{CDCl}_3} - \delta_{\text{C}_6\text{D}_6}$].

The ^1H NMR spectra were recorded on a Bruker AM-500 MHz FT-NMR spectrometer at 500.13 MHz under following conditions: mode FT; internal lock, from CDCl_3 or C_6D_6 ; the residual proton signal of CDCl_3 or C_6D_6 were used as secondary reference for chemical shift (7.24 or 7.16) from TMS respectively; spectra were recorded in a 5 mm o.d. tube; pulse width, 9.5 μs (flip angle 90°); aquistition time 0.8192 or 1.6384s; 8K or 16K data points were accumulated for a spectral width of 5000 Hz, corresponding to a digital resolution of 1.22 or 2.44 Hz per point.

The spectra of compounds (3, 4a and 4b) were recorded at ambient temperature. However, owing to the poor solubility of compounds (1a-c, 2a-c) in C_6D_6 their spectra were recorded at 65°C both in CDCl_3 and C_6D_6 . The concentrations of the compounds (3, 4a and 4b) were 10mg/0.3ml, while for compounds (1a-c, 2a-c) were 2mg/0.3ml. Accuracies of chemical shifts are within ± 0.02 ppm.

ACKNOWLEDGEMENTS

Authors express their appreciation to the 500 MHz FT-NMR National facility, TIFR, Bombay, for recording the ^1H NMR spectra of the compounds. One of us (DLL) is grateful to the Department of Atomic Energy, Government of India for the award of Senior Research Fellowship.

REFERENCES

1. Ronayne J., Williams D H. Solvent Effects in Nuclear Magnetic Resonance Spectroscopy Part XI. The Mechanism of Solvent Shifts of Proton Resonance Induced By Benzene. J. Chem. Soc. (B) 1967; 540-546.
2. Harborne J B., Mabry T J., Mabry H. The Flavonoids (Part I), New York: Academic Press, 1975; 71-74.
3. Banerji A., Luthria D L., Prabhu B R. Prenylated Compounds From *Atalantia racemosa*: Isolation and Synthesis of Two New Pyranoflavones. Phytochemistry 1988; 27: 3637-3640.
4. Jain A C., Khazanchi R., Kumar A. Synthesis of Carpachromene and Related Isopentenylated Derivatives of Apigenin. Tetrahedron 1978; 34: 3569-3573.
5. Dreyer D L., Park K H. Flavones and Diterpenes of *Pamburus missionis* (Rutaceae). Phytochemistry 1975; 14: 1617-1620.
6. Picker K., Ritchie E., Taylor W C. The Chemical Constituents of Australian *Flindersia* Species XXI. An Examination of the bark and the leaves of *F. laevigarpa*. Aust. J. Chem. 1976; 29: 2023-2036.
7. King F E., King T J., Manning L C. An Investigation of Gibbs Reaction and its Bearing on the Constitution of Jacareubin. J. Chem. Soc. 1957; 563-566.
8. Dean F M. Naturally Occurring Oxygen Ring Compounds, London: Butterworths, 1963; 517.
9. Wilson R G., Bowie J H., Williams D H. Solvent Effects in NMR Spctroscopy. Solvent Shifts of Methoxyl Resonances in Flavones Induced by Benzene; An Aid to Structure Elucidation. Tetrahedron 1968; 24: 1407-1414

10. Tori K., Horibe I., Shigemoto H. ^1H NMR Solvent Shifts Induced by Hexafluorobenzene in Monoterpenes. Tetrahedron Lett. 1975; 26: 2199-2202.
11. Suresh V R., Iyer C S R., Iyer P R. Aromatic Solvent-Induced Shifts of Some Dihydropyranochalcones-A Model Study To Differentiate Angular and Linear Dihydropyranoisoflavones. Tetrahedron 1986; 42: 4069-4071.
12. Vyas A V., Mulchandani N B. Benzene Induced ^1H NMR Shifts of Flavone Protons: Detection of H-3. Magn. Res. Chem. 1986; 24: 421-423.
13. Banerji A., Goomer N C. Synthesis of Cycloartocarpesin Trimethyl Ether. Synthetic Commun. 1985; 15: 1165-1170.
14. Ahluwalia V K., Arora K K. Nuclear Prenalytion of Polyhydroxyacetophenones. Tetrahedron 1981; 37: 1437-1439.
15. Banerji A., Luthria D L. Indian J. Chem. (In Press).

Date Received: 08/08/89
Date Accepted: 10/11/89